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In this appendix we develop an argument that a maximal graph with periodic boundary

conditions on a torus (genus 1) has zero specific entropy in support of our manuscript.

Enumerating circle packings is a much more difficult problem than enumerating graphs,

but as we will see, this is an appropriate proxy for predicting the specific entropy of circle

packings. The core of the argument is that in the limit of the number of nodes going to

infinity, the proportion of graphs that are maximal goes to zero. We will outline why this

is true and then demonstrate how it relates to packings of circles in periodic boundary

conditions.

We limit our argument to graphs which are 2-connected because this is what is available

in the literature.

Put in simple terms, a k-connected graph is a graph where a path exists between every

vertex even after removing any set of k−1 vertices and their edges. From this definition, any

k-connected graph is 2-connected for k >= 2. It is wise, in this analysis, to omit graphs which

are not 2-connected as these will never represent jammed configurations. A graph which is

not 2-connected has at least one vertex for which multiple disconnected clusters will form

upon its removal. Such a vertex is termed an articulation point and the independent clusters

can pivot about this point. Such a graph is floppy and we should not consider it among the

set of jammed packings. However, it is worth noting that the inverse is not necessarily true:

a specific k-connected graph for k >= 2 does not necessarily have corresponding jammed

packings with the underlying graph structure.

We further restrict our analysis to packings of hard disks with at least 3 contacts per

disk. It is easy to see that this is required for local rigidity. However, it is worth noting again

that having three contacts per particle is not a sufficient condition for jamming. To better

reduce our search space, we consider the Maxwell-Calladine index theorem which states that

a two dimensional elastic network with n nodes (vertices), m contacts (edges), nfloppy floppy

modes, and S states of self stress has the property that

nfloppy − S = 2n−m. (1)

If we define the average number of edges per node, µ ≡ m/n for a network and note that

we require 1 state of self stress (from the fact that our boundaries are fixed) and 2 trivial

floppy modes, we find that Eqn. 1 sets a lower bound on µ for a jammed packing as

nfloppy − S = 2n−m =⇒ 2− 1 = 2n−m =⇒ µmin = 2− 1/n. (2)

2



Note that this ignores the possibility of non-linearly rigid jammed packings, which can

generally be ignored for large system sizes [1].

If we consider triangulated packings, we have the condition that every face of our network

must have exactly 3 edges. If we factor in the double-counting, then for a maximal graph,

3F = 2m. The Euler characteristic for a toroidal graph is χ = n − m + F = 2 − 2g = 0,

where F is the number of faces and g = 1 is the genus of a torus. Using 3F = 2m, the

relation between the number of faces and edges for a maximal graph, the maximal value of

µ is

µmax = 3. (3)

Note again that there exist packings of hard disks that are not jammed and yet may satisfy

the property µ >= µmin.

Now that we have defined our search space, we begin our derivation with equation 4 from

Chapuy et. al.[2]. The number of graphs, b
(g)
n,m, with n nodes, m edges, and of genus g has

the following asymptotic form

b(g)
n,m ∼ d(g)

µ n5g/2−4 (δµ)n n! (4)

with n vertices and m = bµnc edges, where d
(g)
µ is a prefactor that depends on surface genus

and δµ is the base of the exponential growth with n and does not depend on genus.

This work by Chapuy et al. is an extension of the work by Bender et al. [3] which is valid

for planar graphs (genus g = 0). In Bender et al., the authors have the following theorem

for planar graphs (in the notation of [2]): For m0/n ∈ J, there is a unique t ∈ (0, 1), such

that µ(t) = m0/n, and

b(0)
n,m =

3x0(t)2y0(t)D3(t)n!

8
√

2π (1 + y0(t))σ(t)n3m
x0(t)−ny0(t)−m

(
exp

{
−(m−m0)2

2nσ2(t)

}
+ o(1)

)
, (5)

uniformly as n → ∞ and m0/n ∈ J. In this expression x0, y0, and σ are all pure functions

of a variable t. We work to massage the equation into the form given by 4. Without loss

of generality, the authors of Bender et al. [3] choose t such that t = t(1) ≈ 0.62637 and

y0(t) = 1. This value of t gives

σ = 0.618431, x0 = 0.03819, and µ0 = 2.2629. (6)
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If we let µ ≡ m/n, then

b(0)
n,m =

3x2
0D3n!

16
√

2πσn4µ
x−n0

(
exp

{
−n (µ− µ0)2

2σ2

}
+ o(1)

)
. (7)

This can be rewritten asymptotically as

b(0)
n,m ∼ d(0)

µ n−4 (δµ)n n! (8)

by gathering the prefactor into d
(g)
µ and defining the base of the exponential as

δµ ≡

(
1

x0

exp

{
(µ− µ0)2

2σ2

})
. (9)

We now consider the ratio of b
(1)
n,µ2n and b

(1)
n,µ1n which we define as

Rµ1,µ2 ≡
b

(1)
n,µ2n

b
(1)
n,µ1n

=

(
d

(1)
µ2

d
(1)
µ1

)(
δµ2
δµ1

)n
(10)

= C1,2 exp

{
− 1

2σ2
(µ2 − µ1) (µ2 + µ1 − 2µ0)

}n
, (11)

where C1,2 is the ratio of prefactors and relatively unimportant. We compute the ratio of

the number of maximal toroidal graphs to the number of toroidal graphs for any value of

µ1 < 3. Let µ2 = 3 represent the case of maximal toroidal graph. We see that in the limit

as n→∞, this ratio tends to 0 when

3 > µ1 > 2µ0 − 3 ≈ 1.5258. (12)

Since these equations do not apply to graphs for which µ < 2 − 1/n, we have shown that

the ratio of maximal toroidal graphs to any other type of 2-connected toroidal graph tends

to 0 in the thermodynamic limit.

ZERO SPECIFIC ENTROPY

From the circle packing theorems [4], we know that maximal graphs correspond uniquely

to circle packings. However, this is not true for graphs with lower coordination. In fact, from

the circle packing theorems, we know that there is at least one circle packing for every graph.

Given these two facts, we know that Rµ,3 is an upper bound for the ratio of the number of

triangulated circle packings to circle packings with a fixed µ value where 3 > µ ≥ 2. Since
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this upper bound tends to 0 in the thermodynamic limit, the specific entropy of maximal

circle packings is 0 in the thermodynamic limit. We note that there are many pairs µ1 6= µ2

for which Rµ1,µ2 will also tend to zero. However, µ2 = 3 is the only value for which this ratio

will always tend to zero.

CONFIGURATIONAL ENTROPY

It is true that the specific entropy of maximal graphs goes to 0 in the thermodynamic

limit, but one may also be interested in the behavior of the configurational entropy.

For this, we use equation 4 in reference [2] which is the formula for the total number of

2-connected graphs on a torus (for all possible values of µ),

b(1)
n ∼ d(1)n−1δnn! (13)

and reference [3] tells us that

δ = 1/x0. (14)

We define a new ratio Qµ as the fraction of all graphs with n nodes that happen to have

a particular value of µ to be

Qµ ≡
b

(1)
n,µn

b
(1)
n

(15)

=
d

(1)
µ

d(1)
n−1/2 exp

{
− 1

2σ2
(µ− µ0)2

}n
. (16)

From this it is clear that any µ other than µ = µ0 is rare in the thermodynamic limit.

Next we define the asymptotic probability of finding a graph with a given µ and n

P (µ, n) ∼ P0n
−1/2 exp

{
− 1

2σ2
(µ− µ0)2

}n
. (17)

From this, we define the asymptotic configurational entropy of our system,

S(µ, n) ∼ −kBP (µ, n) lnP (µ, n). (18)

After substituting,

S(µ, n) ∼ −kBP0 exp

{
− 1

2σ2
(µ− µ0)2

}n [
lnP0n

−1/2 − 1

2
n−1/2 lnn− 1

2σ2
n1/2 (µ− µ0)2

]
.

(19)
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We wish to know the value of µ which gives the lowest configurational entropy. We first

consider the boundaries by substituting the numerical values found earlier in (6) :

S(3, n) ∼ kBP0 (0.491475)n
[
− lnP0n

−1/2 +
1

2
n−1/2 lnn+ 0.710344n1/2

]
(20)

and

S(2, n) ∼ kBP0 (0.913619)n
[
− lnP0n

−1/2 +
1

2
n−1/2 lnn+ 0.0903418n1/2

]
(21)

For large n, S(3, n) is lower than S(2, n) therefore, S(2, n) is not a minimum in the limit

of large n. We check if there are any critical points which may correspond to minima. By

differentiating S, this condition is satisfied when

exp

{
− 1

2σ2
(µ− µ0)2

}n
(µ− µ0)

(
−2σ2 + n(µ− µ0)2 + σ2 lnn− 2σ2 lnP0

)
= 0 (22)

The exponential term can never be 0 so we have critical points at µ = µ0 and µ = µ0 ±√
σ2

n

[
2− ln

(
n
P 2
0

)]
.

We define this last solution as µ1±. The critical point for µ0 is

S(µ0, n) ∼ kBP0
1

2
√
n

ln
n

P 2
0

. (23)

This decays very slowly with n so we can easily rule this out as a minimum for large n.

Finally, we check

S(µ1±, n) ∼ kB
e

(24)

This entropy is constant with n and will therefore never be the lowest entropy state.

From this, we can conclude that the configurational entropy of µ = 3 approaches 0 for

2-connected toroidal graphs faster than any other value. For sufficiently large n, it will be

the lowest entropy state. Similarly from before, if we set µ = 3, we see that this is a lower

bound for the configurational entropy of maximal circle packings.
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