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The ideal glass, a disordered system of particles with zero configurational entropy, cannot be realized
through thermal processes. Nevertheless, we present a method for constructing ideal jammed packings
of soft spheres, and thus the zero temperature ideal glass, in two dimensions. In line with the predicted
properties, these critically jammed packings have high bulk and shear moduli as well as an anomalously
high density. While the absence of pressure scaling in the shear moduli of crystalline materials is often
attributed to the ordered nature of the particles, we show for the first time that disordered ideal packings
also have this feature. We also find that the density of states avoids the low frequency power law scaling
famously found in most amorphous materials, these configurations display hyperuniformity, and they melt
at unusually high temperatures compared to conventional packings. In addition to resolving a long-standing
mystery, this methodology represents a valuable shortcut in the generation of well-equilibrated glassy
systems. The creation of such an ideal packing makes possible a complete exploration and explanation of

two-dimensional jammed and glassy systems.

DOI: 10.1103/vldy-r77w

Introduction—A defect free crystal is the apex of order
[1]. By contrast, when a liquid is cooled rapidly, it forms a
glass, an amorphous phase of matter that is the epitome of
disorder [2—6]. Nearly all [7] liquids have a larger entropy
than crystalline solids but lose entropy much faster as
temperature is decreased [8—10]. In 1948, Kauzmann
recognized that there must exist a temperature at which
the entropy of the liquid will cross the entropy of the
crystal, but dismissed as paradoxical the possibility of such
an “ideal glass” [8]. How could there be a liquid state that
is both amorphous and highly ordered [9,11,12]? Here,
we show a nonequilibrium mechanism for creating a two-
dimensional zero configurational entropy jammed packing
of polydisperse disks at zero temperature, which we term
an ideal jammed packing. Such a packing represents the
zero temperature limit of an ideal thermal glass, which is
unreachable by physical processes due to a divergence in
relaxation time [11,13]. This mechanism exploits transient
degrees of freedom [14-25] and leads to zero configura-
tional entropy at jamming, which is equivalent to our
proposed definition of an ideal jammed packing as (1) hav-
ing a fully triangulated contact network, (2) lacking long-
range crystalline orientational and translational order,
(3) being mechanically ultrastable, (4) being hyperuniform,
and (5) having an anomalously high melting temperature
equal to the Kauzmann temperature and an anomalously
low melting density. We demonstrate that this ideal state
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has all of the mechanical and thermal properties of a crystal
while being entirely devoid of crystalline order. This Letter
not only resolves the Kauzmann paradox but also demon-
strates the existence of a thermodynamic glass phase for
this two-dimensional model glass forming system. The
creation of such an ideal glass or packing makes possible a
complete exploration and explanation of two-dimensional
jammed and glassy systems.

Packing protocols—A system of N disks in two dimen-
sions has 2N translational degrees of freedom. At jamming,
the system is isostatic, which means that every degree of
freedom is constrained, and thus, the system must have 2N
contacts between disks [26,27]. Since every contact is
shared by two disks, each disk must then have an average
coordination number of 4. A triangulated packing, by
contrast, must have an average coordination number of
6, and thus, be maximally hyperstatic [28]. We achieve this
by adding an additional degree of freedom to every disk in
the form of a mutable radius.

The following protocol employs radii degrees of freedom
to construct fully coordinated ideal amorphous packings in
two dimensions while approximately preserving an input
distribution of radii. This protocol builds on the use of
transient degrees of freedom [21] and conformal circle
packing [28].

Triangulated packings—N disks are placed randomly
into a square simulation box with side length 1 and periodic

© 2026 American Physical Society
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boundary conditions. Disks are assigned radii drawn from a
log-normal distribution with 20% polydispersity [17],
chosen to avoid crystallization [29]. Radii are scaled to an
initial packing fraction ¢ = 0.915, chosen to result in highly
coordinated (i.e., hyperstatic) packings [2,30]. The chosen
value of ¢ leads to highly overjammed packings, which may
be produced more quickly than critically jammed packings
and are, thus, computationally convenient. Unjammed or
critically jammed packings may also be used, producing
qualitatively similar results. Particles interact through the
soft sphere harmonic interaction potential,
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where the sum is over pairs of indices (i), 6;; is the sum of
the ith and jth radii, and r;; is the distance between centers.
We use PyCudaPacking [31, 32] a GPU based software pack-
age with an implementation of the FIRE algorithm [33],
to adjust the positions and radii of the disks to find the
inherent state structure, a local minimum of energy.
Similarly to Hagh et al. [21], the radii degrees of freedom
are subject to constraints on moments of the radius
distribution in order to avoid falling into various trivial
global minima. The result of such a minimization is nearly
triangulated; however, these additional constraints neces-
sarily introduce at least an equal number of “defects” into
our system in the form of missing contacts.

In order to produce fully triangulated packings, we
compute the radical Delaunay triangulation for the radii-
minimized configurations. To find a fully triangulated hard
sphere packing, we define a constraint for each edge in the
radical Delaunay network requiring the distance between
the centerpoints of contacting particles to be equal to the
sum of their radii:

2
zZ(“ x"—l—ZA}jz’Z) r+r) (2)

where x{ is the position of particle i in dimension a, r; is the
radius of particle i, A is the lattice vector matrix, and zfj 1S
the fth component of the vector of integer lattice coordinates
indicating which periodic image of particle i will be closest
to the central image of particle j. Because the triangulated
network is a maximal planar graph, the circle packing
theorem guarantees the existence of a unique configuration
that satisfies these constraints [28]. We write all of the
degrees of freedom for our system as a single vector, ¢, and
place an artificial springlike attraction to the radii minimized
system, ¢, to get the following Lagrangian:

E C0|2+Z/1 l] (i) (3)

where 4 are the Lagrange multipliers. The total number of
degrees of freedom in the system will be 2N (positions) +
N (radii) + 4 (lattice vectors). However, from this we
subtract the 2 (bulk traslations) + 1 (bulk rotation) +
1 (overall scale). This leaves us with 3N degrees of freedom
and 3N constraints for a triangulated graph. This method
produces critically jammed packings with no gaps between
contacting particles and overlaps that are O(1073?). One
may alternatively employ CirclePack [28] to produce a new
disk packing from the radical Delaunay triangulation, if this
level of precision is not required.

Our protocols yield packings at jamming fraction
¢ ~0.910, the densest such 2D amorphous packings of
which we are aware. This density is meaningfully larger
than that of the size-segregated hexagonal lattice of disks,

Phex = 7/V/12 7~ 0.9069, and much larger than the typical
jamming density for conventionally prepared packings with
the same disk size distributions as the triangulated pack-
ings, ¢; ~0.849 [2,30].

These processes leave the radii distribution approxi-
mately fixed relative to the radii minimized packings. We
characterize this change in greater detail in the End Matter.
We subsequently produce packings at a range of pressures
by increasing the packing fraction as guided by the protocol
described in [31].

From each triangulated packing, we produce conven-
tionally jammed position-minimized packings with identi-
cal radii distributions by first randomizing positions and
then minimizing energy with respect to position degrees of
freedom only [34]. Conventionally jammed packings are
illustrated in Fig. 1(b).

Properties of an ideal packing—We demonstrate that our
triangulated packings meet all of the requirements for an
ideal jammed packing.

(1) Ideal packings must be triangulated. The circle
packing theorem provides a mechanism to convert any
embeddable 2D graph into a disk packing with contact
network equal to that graph. Generically, there will be a
very large number of disk packings that share the same
contact graph, and thus, the configurational entropy of a
packing is bounded by that of the associated contact graph.
However, for triangulated graphs there is a one-to-one
mapping (unique up to trivial symmetries like rotations and
mirrorings) between triangulated disk packings and trian-
gulated graphs, and thus, the configurational entropy of the
triangulated packing is equal to that of the underlying
contact graph. As we show in the Supplemental Material
[35], the specific configurational entropy of a triangulated
graph goes to zero in the thermodynamic limit, and
thus, the specific configurational entropy of triangulated
packings also must go to zero [37-39]. Finally, a non-
triangulated packing will necessarily and generically have
neighboring particles that are separated by small gaps.
Relaxing those gaps away must then lead to a denser
packing. This will be impossible for a triangulated packing,
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FIG. 1. (a) Triangulated packing and (b) conventionally
jammed packing with N =256 and an identical set of radii.
The contact network is overlaid in black, while face coloring of
disks corresponds to the number of contacts contacting neighbors
(gray for zero, light green for three, periwinkle for four, blue for
five, purple for six, red for seven, and teal for eight). (c) The
orientational correlation function, Cg, for triangulated packings
(magenta) and conventionally jammed packings (tan) of N =
2048 (4’s) and 4096 (0’s). (d) The finite size scaling for the
translational order parameter, 7, for triangulated packings
(magenta), conventionally jammed packings (tan), and the
hexagonal crystal (black).

which must then be the densest packing possible with a
given set of radii. By construction, the packings in this
Letter have a fully triangulated contact network at the point
of jamming.

(2) Ideal amorphous packings must, by definition, have
no crystalline orientational or translational order. We
demonstrate this lack in triangulated packings by comput-
ing the correlation function of the orientational order para-
meter y¢ [40] and the finite size scaling of the translational
order metric 7 [41].

The local orientational order parameter, g ;, is defined
for disk i as

N,
1 - .

Ve, = N E %0 4)
ij:1

where N; is the number of neighbors, and 6;; is the polar
angle of the vector between particle i and neighbor j [40].
The correlation function Cg(r)

Co(r) = (wo(FWE(72)) 7,7, 1= (5)

an average over g pairs separated by distance r, is
constant for a crystal but decays exponentially for both

the conventionally jammed and triangulated amorphous
systems, as shown in Fig. 1(c). Note that C¢ for a crystal is
always 1, irrespective of distance.

The translational order metric 7 [41] is defined in 2D
space as

v=5z [ lotr) - 177, (6)

where g(r) is the pair correlation function and D is a length
scale chosen to be the average particle radius. Finite size
scaling in 7 indicates the degree of long-range translational
order in a system, Poisson distributed points have ¢ = 0 for
all system sizes, amorphous disk packings maintain a
constant nonzero value of 7 with increasing N, and ordered
systems show power law growth in 7 with N. Figure 1(d)
shows 7 as a function of system size for the hexagonal
crystal (circles), conventionally jammed systems (tan,
labeled), and triangulated packings (violet, labeled).

Taken together, these two measurements demonstrate
that triangulated packings are equally amorphous as con-
ventionally jammed packings. Note that the absence of
crystalline order does not preclude other forms of amor-
phous order, such as those revealed by point-to-set corre-
lations, steric correlations [42], and other many-body
correlation functions.

(3) Ideal packings must be mechanically ultrastable as a
result of being the deepest well in the energy landscape.
Ideal jammed packings must be strictly jammed, in the
sense that no collective motions or strains lead to unjam-
ming motions [43,44]. By employing a linear programming
algorithm [43,44] that takes into consideration the one-
sided contact potential, we find that all triangulated pack-
ings tested up to N = 4096 are strictly jammed just as
crystalline systems are strictly jammed.

Figure 2 shows the mechanical properties of conven-
tional packings, triangulated packings, and the hexagonal
crystal. We calculate elastic moduli [45] and the vibrational
density of states using the linear dynamical matrix of a
packing. Triangulated packings are mechanically ultra-
stable as indicated by constant, and anomalously large,
bulk and shear moduli as pressure is brought to zero, in
contrast to the vanishing shear modulus at zero pressure
found in conventionally jammed packings. Further, they
play host to vibrational modes at vanishing pressure, which
are governed by the Debye, or phononic [11,46], scaling of
crystals and ultrastable systems and lack the Boson peak
[47,48] of conventionally jammed packings. Just as in a 2D
crystal, there is no phonon gap in the ideal packing because
there is only a single “phase” throughout the entire system.
Further, because the ideal packing is amorphous, there are
no special lattice directions, and thus, the system is fully
isotropic. In sum, the mechanical properties of triangulated
packings are much more similar to those of crystals than to
those of conventionally jammed packings [49], rendering
them maximally distant from the point of marginality.
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FIG. 2. (a) Bulk modulus per particle K/N is plotted as a
function of pressure, P for triangulated packings (magenta
points), conventionally jammed packings (tan points), and
hexagonal crystals (black line) for N ranging from 64 to 4096
in powers of 2 (indicated by Y’s, squares, pentagons, triangles,
stars, +’s, and 0’s, respectively). Moduli are averaged over 10
independent packing. Error bars indicate standard error. (b) Shear
modulus per particle, G/N, is presented with the same colors and
symbols. (c) Density of vibrational states, D(®), is presented with
the same colors and symbols; only N = 4096 is shown for clarity.

(4) An ideal packing must have vanishing long-range
density fluctuations and thus be hyperuniform [50]. If it had
such fluctuations, then one could cut out the lower density
regions and replace them with copies of the higher density
regions in order to achieve a denser packing. Further, low
entropy is a necessary condition for hyperuniformity, which
is possible only for states of zero complexity [51].

We show that our triangulated packings are hyper-
uniform by directly measuring the long wavelength (and

thus, the small wave number, I_é) scaling in the spectral
density [52],

1072 E
S 10k
~ F
e C
10~4 E
1075+ :
(Nk
FIG. 3. Binned averages of spectral density 7, scaled by (r) to

collapse curves from N = 64-8192; respective markers are, in
increasing powers of 2, Y’s, squares, pentagons, triangles, stars,
+’s, 0’s, and hexagons. Color indicates protocol; tan for position-
minimized packings and magenta for triangulated packings.
Dashed lines with slope of 1/2 (black) and 2/3 [43] (gray)
are overlaid as a visual guide. Error bars indicate standard
geometric error of mean for each point; points without error
bars are unaveraged.

| SNy exp(—ik - X))m(k; R))
V )

HOE (7)

where V =1 is the box volume,

- 27I'R -
m(k;R;) E|T|111(Rj|k|)’ (8)

and J; is the Bessel function of the first kind with order 1.
We take a Fourier space angular average to produce j(k),
shown in Fig. 3. Hyperuniformity corresponds to a vanish-
ing value of (k) in the limit of small k = |%| [50,52].
While both conventionally jammed and triangulated pack-
ings show approximately power law behavior for small k
[53-56], the triangulated packings show a far greater
degree of effective hyperuniformity [57].

(5) The melting temperature (for soft spheres) and the
melting density (for hard spheres) measure the thermody-
namic stability of a glass and encode information about the
height of the barriers about the stable basin. In an ideal
glass, the melting temperature should be higher and the
melting density should be lower than that of any other
glass. Using standard Monte Carlo techniques, we measure
the relaxation time of the thermal packing seeded by the
positions of the jammed state at various temperatures (soft
spheres) or deflated densities (hard spheres) to identify the
point at which the relaxation time diverges. We identify this
point as the melting point of each packing (see End Matter
for details).

We find that the conventional packings have T,, < 10~*
for soft spheres and ¢,, = 0.824(5) for hard spheres, while
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FIG. 4. Measurements of the relaxation time for a sample
triangulated packing (magenta) and conventionally jammed
packing (tan), each with N = 8192 using 10 thermal averages
for (a) thermal soft spheres and (b) hard spheres. Solid line fits are
to the modified VFT form of Eq. (B1) and to the power-law
diffusion form of Eq. (B2), respectively, and dashed lines show
the ideal glass melting point. Insets show a lack of statistically
significant finite size scaling for N > 128.

the triangulated packings have a melting temperature of
T,, = 0.00189(10) for soft spheres and ¢,, = 0.780(6) for
hard spheres. The uncertainty here indicates a 95% con-
fidence interval, and no statistically significant finite size
effects are seen for N > 128.

These results stand in opposition to previous work
done on ultrastable (but not ideal) 2D hard sphere glasses,
which can be read to suggest 7', = 0 for finite size systems
[49,58]. This distinction is likely due to the difference
between truly ideal systems and those that are merely
ultrastable.

Of course, the Mermin-Wagner-Hohenberg (MWH)
theorem [59,60] would seemingly require that the melting
temperature in 2D should converge to zero in the thermo-
dynamic limit. We see no evidence of such conver-
gence. MWH assumes continuous symmetries for which
the length scale diverges. This is why MWH is seemingly
violated in, for example, the Kosterlitz-Thouless-Halperin-
Nelson-Young two dimensional crystalline melting sce-
nario [61], where this scale is extremely large, yet finite.
Further, recent work has questioned the applicability of
MWH to amorphous phase transitions [62—64].

Conclusion—The nature of the glass transition remains a
mystery, and the question of whether an ideal configuration
exists lies at the heart of this mystery [9]. The constructive
scheme presented herein demonstrates not only that ideal
packings exist but that they have superlative structural,
mechanical, and thermal properties. This represents a leap
forward in understanding the complex energy landscapes
underlying disordered systems and places the existence of a

thermodynamic glass phase on firm footing. By working
backward from the ideal system through the introduction of
defects, we hope to fully explore the glassy landscape of
two-dimensional amorphous systems. Ideal packings are
also interesting from a practical perspective. Such packings
are fully amorphous while presenting the bulk material and
thermal properties of crystalline materials: ultrastability,
hyperuniformity, and high melting temperatures, all proper-
ties that are desirable from an industrial perspective.
However, novel approaches will be necessary to create
such packings in practice, as they are not accessible through
common thermal or mechanical processes. To create such
systems in practice, a physical implementation of our
algorithm would have to be developed.
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End Matter

Diameter  distribution—Figure 5  shows  that
triangulated packings with initial radii drawn from a 20%
polydispersity log-normal distribution are distributed more
closely to a 26% polydisperse log-normal distribution

after radii minimization. The final step of creating the
perfectly triangulated packing (illustrated in Figure 1)
typically involves changes to particles’ relative radii on
the order of 0.2%. Note that radius minimized packings
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FIG. 5. The probability distribution of disk diameters,
P(0)/ (o), averaged over 10 packings of 4096 disks. The starting
distribution is at 20% polydispersity (gray dashed line), the
distribution after radii minimization is plotted as gray x’s,
the distribution after triangulation is plotted as magenta triangles,
and for comparison, a 26% polydispersity distribution is shown
in black.

are already quite close to a fully triangulated state, and
thus, require only minimal changes in radii.

Measuring the melting point—To measure the melting
temperature, we apply simple constant volume
Monte Carlo dynamics at a range of temperatures 7T
using standard Metropolis sampling with the Boltzmann
weight exp(—AU/T) [67] using the same packing
fraction ¢ for both the conventional jammed packings
and the triangulated packings. For each temperature, we
measure the time 7, that it takes for the system to
forget its initial state (i.e., the state-overlap parameter
becomes 1/¢e) [68]. The melting temperature T, is then
extracted from a fit to a modified Vogel-Fulcher-
Tammann (VFT) form [69],

7))
T,, = T €Xp 7T ,

where D is a dimensionless material dependent constant.
The standard VFT equation with ¢ =1 fits our data
poorly, in large part due to the large polydispersity,
which generically leads to a wide variety of minima, and
thus dynamical heterogeneities. We thus take inspiration

(B1)

from other models with a high degree of dynamical
heterogeneity that suggest a stretched exponential form
in the viscosity and relaxation times [70,71], and thus, a
variable c. This exponent then relates to the ductility of
the glass, with higher values of c¢ indicating stronger
glasses [5].

Figure 4 shows that the conventional packings have
T,, < 107, while the triangulated packings have a melting
temperature at least an order of magnitude larger,
T,, = 0.00189(10), with the error bar indicating a 95% con-
fidence interval. Here, the melting temperature remains
constant and nonzero to within the reported fitting error for
system sizes N > 128, indicating a lack of finite-size
scaling. The presence of a truly nonzero melting temper-
ature in a 2D system suggests a violation of the Mermin-
Wagner-Hohenberg theorem, which forbids spontaneous
symmetry breaking. There are at least two caveats to
consider: (1) it is possible that an amorphous glass breaks
the continuous symmetry of the liquid, and thus, does not
require a violation of MWH [62-64]; and (2) the KTHNY
scenario [61] offers the possibility of a transition between
quasi-long-ranged and long-ranged ordering, which also
would not violate MWH.

The process of determining the melting density follows a
similar routine by using constant volume Monte Carlo
dynamics at different packing fractions ¢ with hard sphere
Metropolis sampling starting from the seeded ideal (or
nonideal) glass positions. Here, however, the relaxation
follows a simple power law scaling,

Tm = D(gOm - (p)—}” (B2)
where for the ideal glass at N = 8192, we find D = 57(12),
@, = 0.780(6), and y = 2.6(3), and for the nonideal glass,
we find D = 150(30), ¢,, = 0.824(5), and y = 2.28(15).
Curiously, we find that this seeded diffusion process has a
critical exponent y, which is consistent with the mean-field
glass value of y = 2.33786 [72] unlike the monodisperse
counterparts [68], which undershoot this value. As with the
melting temperature, we observe no statistically significant
finite size scaling for N > 128, indicating that the thermo-
dynamic melting density is ¢,, = 0.780(6).

058201-7



	Ideal Glass and Ideal Disk Packing in Two Dimensions
	Introduction
	Packing protocols
	Triangulated packings
	Properties of an ideal packing
	Conclusion
	Acknowledgments
	Data availability
	References
	Diameter distribution
	Measuring the melting point


