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The theory of diffusion seeks to describe the motion of particles in a chaotic environment. Classical theory
models individual particles as independent random walkers, effectively forgetting that particles evolve together
in the same environment. Random walks in a random environment models treat the environment as a random
space-time field that biases the motion of particles based on where they are in the environment. We provide a
universality result for the moderate deviations of the transition probability of this model over a wide class of
choices of random environments. In particular, we show the convergence of moments to those of the multiplica-
tive noise stochastic heat equation, whose logarithm is the Kardar-Parisi-Zhang equation. The environment only
filters into the scaling limit through one parameter, which depends explicitly on the statistical description of the
environment. This forms the basis for our introduction, in Hass et al. [Phys. Rev. Lett. 133, 267102 (2024)], of
the extreme diffusion coefficient.
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I. INTRODUCTION

Classical diffusion theory is used to describe the statistical
behavior of agents in a wide variety of systems with ran-
dom or chaotic fluctuations such as stock prices [1,2], the
movement of photons in a scattering medium [3], and the
spread of viruses [4]. The theory is built upon the assumption
that each particle can be modeled as effectively indepen-
dent random walkers [5–12], thus reducing everything to one
parameter—the Einstein diffusion coefficient—that character-
izes the variance per unit time of those walkers. Despite the
simplicity of this model, it is remarkably effective in describ-
ing the statistics of the bulk or typical diffusing particle in a
system of many particles [13–15]. However, a recent series
of works [16–25] has provided evidence that the independent
random walkers model for many-particle diffusion fails to
accurately predict the behavior of extreme particles, i.e., those
that travel the farthest or fastest and are often of considerable
interest [26–36]. Those works have focused on models of
random walks in a random environment (RWRE) with envi-
ronments that are quickly mixing in space and time. Although
typical particles in such models for many-particle diffusion
behave as if the environment was statistically averaged, i.e.,
reduced to the independent random walker model, the extreme
particles manifest novel behavior in the presence of a common
random environment. The purpose of this paper is to unwind
how the statistical description of the random environment
translates into the statistical behavior of the extreme particles.

In the model considered here, an environment is a
collection of transition probabilities, indexed by discrete one-
dimensional space and time. At each time, particles choose
their next spatial location independently according to the
transition probabilities at that space-time point. The random
environment comes from choosing those transition probability

distributions randomly so as to be independent and identically
distributed over all of space and time. We consider the many-
step transition probability—which is random in light of the
random environment. We show that as the time span grows
in a scale N , the moderate deviations of this transition prob-
ability in a spatial scale N3/4 (i.e., the probability of a single
particle moving N3/4 to the right of its mean velocity) con-
verges to the solution of the stochastic heat equation (SHE),
whose logarithm solves the Kardar-Parisi-Zhang (KPZ) equa-
tion, and which is given by

∂T Z = 1
2∂2

X Z +
√

2D0Zη, (1)

where X is distance and T is time. Above we have Z (0, X ) =
δ(X ) (Dirac delta function) initial data and take η(X, T ) to
be space-time Gaussian white noise [i.e., E[η(X, T )] = 0 and
E[η(X, T )η(X ′, T ′)] = δ(X − X ′)δ(T − T ′)].

The only parameter in this limit is the noise strength
D0 ∈ R>0, which we determine in Eq. (4) explicitly in terms
of the statistical description of the random environment. We
show convergence at the level of moments, and, though our
methods can be applied to general moments, we restrict our-
selves to the first and second moments which suffice to pin
down the value of D0. Similar results have been demonstrated
recently in the mathematics literature in work of Parekh [23].
That work, as well as ours, can be seen as a generalization
of the nearest-neighbor or sticky-Brownian motion models
studied in Refs. [19,22,37] to arbitrary random environments.
Since moderate deviations translate into the behavior of the
maximum of many draws from a probability distribution, our
results translate into results about the statistical behavior of
the extreme particles under certain scalings of time and the
number of particles [18,20,25], as well as the location of first
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passage barriers [18,21,25] and the correlations between the
positions of particles [38].

The remainder of the paper proceeds as follows. In Sec.
II, we clearly describe the RWRE model and some relevant
notation. Section III contains our main results, namely the
convergence of the first two moments and the determination
of D0. Our approach is explained in Sec. IV—in particular
we use a variant of the replica method to relate moments
to discrete local times and then employ two probabilistic
tools—the Tanaka formula for Brownian local times and the
stationary measures for certain Markov chains—to relate this
to the replica formulas for the SHE moments. Section VI
fleshes out this local time convergence approach, and Sec. VII
relates those calculations back to the moments of the moderate
deviations.

II. THE RWRE MODEL

The random environment in which we will consider ran-
dom walks is defined as ξ := {ξt,x : x ∈ Z, t ∈ Z�0}, where
each ξt,x is a probability distribution on Z. The ξt,x are
themselves random, chosen to be independent and identically
distributed over all choices of t and x, with a distribution ν

that completely determines the RWRE model. Since ξt,x are
not correlated in time, the environment is memoryless. Given
an environment ξ, we will consider N independent random
walkers; when a walker is at position x and t time, they choose
how far to jump in the next time interval according to the
distribution ξt,x. Different walkers at the same site use the
same distribution ξt,x but sample from it independently. Thus,
there are two levels of randomness in the model, that of the
environment in which all particles evolve together and that of
the independently sampled walker trajectories. We introduce
some notation to keep track of these two levels of randomness
and illustrate it with an example.

We let M1(Z) denote the space of probability distribu-
tions on Z and ν a probability distribution on M1(Z). Each
choice of ν corresponds to a different law on the random
environment ξ, where we sample ξt,x ∈ M1(Z) according to
ν, independently for each (t, x). We will restrict ourselves to
only consider ν which are supported on finite range prob-
ability distributions, i.e., if ξ is distributed according to ν,
then for some M sufficiently large, ξ ( j) = 0 for all j > M.
We let Eν[•] denote the expectation of a function • of ξ

with respect to the product measure where each ξt,x is inde-
pendent with distribution ν. To illustrate this notation, let us
note one example. For integer k > 0, and α−k, . . . , αk > 0, let
(ξ (−k), . . . , ξ (k)) be Dirichlet distributed with the specified
α parameters [and let all other ξ ( j) = 0 for j /∈ {−k, k}].
Precisely, restricted to the simplex where ξ (−k), . . . , ξ (k) ∈
[0, 1] and ξ (−k) + · · · + ξ (k) = 1, the probability density
function is proportional to

∏k
j=−k ξ ( j)α j−1. This defines a

random probability distribution on Z (or, rather, {−k, . . . , k})
and hence defines one choice of ν.

Given an instance of the environment ξ, we will con-
sider N ∈ N random walkers evolving independently with
jump distributions determined by ξ and denote the corre-
sponding probability measure by P ξ. Such a model naturally
lends itself to the study of extreme particles and allows
one to extract extreme value statistics such as those of the

particle which is at the maximum distance at a given time,
max({R1(t ), . . . , RN (t )}), or that which is first to cross a given
boundary [25].

More precisely, P ξ is a probability measure on the sam-
ple space (ZN )Z�0 , where we think of an element R =
(R1, . . . , RN ) of this space as the time-indexed spatial trajec-
tory of N walkers R1(t ), . . . , RN (t ) for t ∈ Z�0. For a given
realization ξ of the environment, we define P ξ to be the mea-
sure on (ZN )Z�0 such that (R1, . . . , RN ) are distributed as N
independent random walks all started at 0, with independent
increments given, for each k ∈ {1, . . . , N} by

P ξ (Rk (t + 1) = x + i | Rk (t ) = x) = ξx,t (i).

In other words, each walker uses the jump distribution at their
current time and position to determine the size of their next
jump. When the environment ξ is random, the measure P ξ is
random as well. We will be interested below in understand-
ing the random probability distribution of a single walker,
i.e., P ξ (Rk (t ) = x). In that case, we will adopt the notation
R(t ) = R1(t ), dropping the superscript.

We define the annealed probability measure Pν on the
same N-path sample space (ZN )Z�0 by averaging P ξ over
ξ, according to the earlier described ν-dependent prod-
uct measure Eν . In other words, we define the annealed
probability measure Pν (·) := Eν[P ξ (·)] and the correspond-
ing expectation Eν[·] = Eν[Eξ[·]]. For any k � N , we call
the process (R1, . . . , Rk ) with law given by Pν the k-point
motion.

We denote the average environment as ξ̄ = Eν[ξt,x], which
can also be thought of as the ensemble-averaged environment,
meaning what you see if you average over a large swath of
space and time. This average is the same at each site, hence, no
t, x subscript is needed. For simplicity, we will only consider
models with ν that have a drift-free average environment, i.e.,
such that

∑
i∈Z ξ̄ (i)i = 0, though we expect similar results

to hold for general ν after changing to a suitable moving
reference frame.

Since we will make extensive use of them, we describe
here the one- and two-point motions R1 and (R1, R2) under
the annealed measure Pν . The one-point motion R1 is an in-
dependent and identically distributed increment random walk
that jumps from position x to position x + j with probabil-
ity ξ̄ ( j) for all j ∈ Z. The same is true marginally of R2;
however, it is not quite true that R1 and R2 are independent.
When R1(t ) �= R2(t ), (R1, R2) evolves according to indepen-
dent ξ̄ distributed increments, i.e., if R1(t ) = x and R2(t ) = y,
then R1(t + 1) = x + j and R2(t + 1) = y + k with probabil-
ity given by the product ξ̄ ( j)ξ̄ (k). However, when R1(t ) =
R2(t ) = x, the probability that R1(t + 1) = x + j and R2(t +
1) = x + k is equal to Eν[ξt,x( j)ξt,x(k)].

It follows from the above two-point motion transition for-
mulas that we can think of them as a pair of sticky random
walks since when the two walkers are at the same site at time
t , they are more likely to also be at the same site at time t + 1
than two independent random walks. An important object
in our analysis will be the difference V (t ) := R1(t ) − R2(t )
between the two-point motion (R1, R2). In particular, we will
study the gap �(t ) := |V (t )|. The walk V (t ) is a Markov chain
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on Z where the transition probability from state i to j is

p(i, j) =
{∑

k∈Z Eν[ξt,x(k)ξt,x(k − j)] if i = 0∑
k∈Z ξ̄ (k)ξ̄ (k + j − i) if i �= 0

, (2)

which only depends on j − i and whether or not i = 0. Fur-
thermore, for i, j �= 0, we have p(i, j) = p( j, i).

For clarity, we now summarize the class of models
we study. We consider RWRE models with the following
assumptions:

(1) Particles take finite-range jumps.
(2) The environment is given by an independent and iden-

tically distributed family of random probability distributions
ξt,x, indexed by times t and positions x.

(3) The average environment is drift free such that∑
i∈Z ξ̄ (i)i = 0.

III. MAIN RESULT: RWRE LIMIT TO SHE

Based on previous results for nearest neighbor RWRE
jump models [17–19,22], we expect that in the moderate de-
viation regime, the tail probability will have environmental
dependent fluctuations that have a SHE scaling limit. We will
precisely state the scaling of this tail probability and demon-
strate convergence to the SHE at the level of the first and
second moments. Our methods can be readily generalized to
show convergence of higher moments, but the first and second
moments suffice in identifying the a priori unknown noise
strength coefficient D0.

We study the (random) tail probability [recalling our short-
hand convention that R(t ) = R1(t )]

P ξ

(
R(NT ) � N3/4T +

∑
i∈Z ξ̄ (i)i3

2(2D)2
N1/2T +

√
2DNX

)
(3)

in the limit that N → ∞, where N ∈ Z>0, T ∈ N−1Z�0,
X ∈ R, and D := 1

2

∑
i∈Z ξ̄ (i)i2 is the diffusion coefficient of

a random walk in the average environment. Note that here
and below we use x and t to represent discrete positions in
space and time while X and T represent continuous variables
corresponding to the KPZ equation. We have dropped the
superscript on the random walk in Eq. (3) since all N random
walks are independent and identically distributed.

Our main result, given by Eq. (40), states that the fluctua-
tions of Eq. (3) converge to the SHE in Eq. (1) with time T ,
position X , and noise strength

D0 = λext

(2D)3/2
, (4)

where λext is a characteristic length defined as follows. Let Y
be a random variable distributed according to ξt,x, which can
be thought of as a single step of a random walk R1. Further let
μ(l ) be the unique invariant measure of V (t ) with the normal-
ization μ(0) = 1 [we address the necessary modifications for
the case where the invariant measure of V (t ) is not unique in
Sec. VI A 1]. We then have

λext = Varν (Eξ[Y ])∑∞
l=0 μ̃(l )Eν[�(t + 1) − �(t ) | �(t ) = l]

, (5)

where

Varν (Eξ[Y ]) = Eν

[(∑
i∈Z

ξt,x(i)i

)2]
,

μ̃(l ) =
{

1 if l = 0

2μ(l ) if l > 0
.

Although the form of λext is rather complex, it simplifies
significantly for a number of distributions, which we discuss
in [25].

The term Varν (Eξ[Y ]) satisfies Varν (Eξ[Y ]) ∈ [0, 2D] and
represents the variance, over all environments, of the drift of
a single jump of a random walk. When Varν (Eξ[Y ]) = 2D,
the jump distribution is only supported on a single site, so the
walks are perfectly sticky. In the limit that Varν (Eξ[Y ]) →
2D, sticky Brownian motion can be recovered as studied in
Ref. [37]. When Varν (Eξ[Y ]) = 0, the drift of the system is
deterministic. Since we only study environments that are net
drift free, this means Eξ[Y ] = 0 with probability 1 (see Refs.
[23,24] for a discussion of this case).

The invariant measure, μ̃(l ), can be interpreted as how
much time two particles spend a distance l apart as compared
to being at the same site in the long-time limit. One could
potentially extract the invariant measure using microrheology
as follows [39,40]. Start two particles in the same environ-
ment. Let them diffuse for a long time and then measure
their distance apart. Repeat this many times in different en-
vironments to build a histogram of the distance apart. After
normalizing the histogram to 1 when the particles are at the
same location, the histogram represents the invariant measure,
μ̃(l ). Alternatively, the invariant measure could be measured
by observing a large system of diffusing particles. Letting the
system run for a long time and then building a histogram of
the distances between pairs of particles yields the invariant
measure, μ̃(l ).

The term Eν[�(t + 1) − �(t )|�(t ) = l] does not depend
on t as we are conditioning on �(t ) = l . This term quantifies
the change in the distance between two random walks. The
expectation value could be extracted using microrheology as
follows. Start two particles a distance l apart and record how
much farther apart they are after a small time step. Repeating
this for many trials yields the expectation value. Since we are
assuming a finite-size jump distribution, the expected value
will be 0 for large-enough l , and thus, the sum in the denomi-
nator will be finite.

Our main result makes a remarkable connection between
the microrheological quantity, λext, and extreme values. Our
results agree with those for nearest neighbor RWRE models
[19,22] and a specific case of a more general class of RWRE
models studied in Ref. [23].

IV. OVERVIEW OF OUR DERIVATION

To show convergence of the tail probability to the SHE,
we work with a more general setup of which the tail prob-
ability in Eq. (3) is a special case. We study the probability
mass function smoothed by a spatial test function. We include
this smoothing because the probability mass distribution at a
single lattice site is too noisy to work with (i.e., it depends
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on the order-one behavior of the noise). The tail probability
can be recovered by choosing the spatial test function to
sum over all lattice sites in the tail, as discussed below. Of
course, any physical measurement of diffusion involves some
smoothing, so this is a natural lens through which to study
the model.

Since the RWRE probability mass function is given in
terms of a discrete path integral through the random en-
vironment, its moments admit representations in terms of
interacting random walks, where the interaction relates to
the law of the environment and is active when the walks
coincide. This description is a discrete analog of the replica
method formulas for moments of the SHE in terms of
Brownian motions interacting through their local times. The
argument presented below identifies a scaling under which
the discrete moment formulas converge to their continuum
SHE counterparts.

As shown below, the fluctuations of the RWRE tail prob-
ability converge to that of the KPZ equation when at lattice
positions which scale like N3/4. This scaling regime is called
the “moderate deviation regime” [19]. The central limit
regime is found for lattice positions which scale like N1/2. In
this regime, we expect fluctuations in the tail probability to be
determined by the Edward-Wilkinson universality class. The
large deviation regime is found for lattice positions of order
N . In the large deviation regime, fluctuations in the tail prob-
ability have been conjectured to be Tracy-Widom distributed
[16–18]. However, this has only been proven rigorously for
a specific choice of environment [16]. If one assumes that
there are no abrupt changes in the distribution of fluctuations,
then one would expect the distribution in the moderate de-
viation regime to smoothly interpolate between the Gaussian
and Tracy-Widom distributions. As the SHE is known to do
precisely this, it is natural that we find the fluctuations of the
tail probability in the moderate deviation regime converge to
the SHE.

We now introduce a smoothed out version of the probabil-
ity mass function under this moderate deviations scaling. To
start, we re-express the location about which we are study-
ing the tail probability as a window of size

√
2DN about

x = c(N )T , where

c(N ) = N3/4 +
∑

i∈Z ξ̄ (i)i3

2(2D)2
N1/2.

This specific choice places us in the moderate deviation
regime and is justified in detail below. The probability mass
distribution at this location in the tail decays to first order like
a Gaussian as N → ∞, mimicking the behavior of the tail in
the central limit regime. About this Gaussian behavior there
are random fluctuations in the probability mass function. To
study these fluctuations, we rescale the probability mass func-
tion by the first-order Gaussian behavior so the fluctuations
stay of order one. This asymptotic Gaussian behavior is en-
coded in the prefactor C(N, T, X ), whose particular functional
form is chosen for future mathematical convenience. Since the
fluctuations at a single lattice point are too noisy to work with
directly, we smooth the probability mass function in space by
a spatial test function, φ.

Putting all of these elements together, we study

UN (T, φ) :=Eξ

[
C

(
N, T,

R(NT ) − c(N )T√
2DN

)

× φ

(
R(NT ) − c(N )T√

2DN

)]
, (6)

where φ : R → R is a spatial test function (i.e., a smooth
and compactly supported function), R = R1 is a single random
walk in the random environment ξ, and

C(N, T, X ) :=
exp
{

c(N )
2DN1/4 T + 1√

2D
N1/4X

}
(∑

i∈Z ξ̄ (i)exp
{

i
2DN1/4

})NT

encodes the first-order Gaussian behavior of the probability
mass distribution in the moderate deviation regime while its
higher-order terms conspire to yield convergence to the mo-
ments of the KPZ equation. Thus, UN (T, φ) is a weighted
(by the C(N, T, X ) factor) probe of the distribution of R(NT ),
smoothed by a test function, in the vicinity of c(N )T and in
the scale

√
2DN .

We now give our general strategy to show the moments
(for different k) Eν[UN (T, φ)k] of Eq. (6) converge to those
of the SHE. We fully realize this for the first and second
moments, though the approach works similarly for general
moments. Consider the first moment. It is immediate, see (9),
that Eν[UN (T, φ)] can be expressed in terms of an expectation
over the one-point motion. Then, due to its multiplicative
nature, the C(N, T, X ) prefactor in the definition of UN (T, φ)
can be absorbed as a tilt of the jump distribution of the
one-point motion, and hence in the limit yields a Brownian
expectation.

Before going to the k = 2 case, let us note that the kth mo-
ment of the SHE integrated against a spatial test function can
be written (via the replica method) in terms of the expectation
of the local time of k Brownian motions

E

[(∫
R

φ(X )Z (X, T )dX

)k
]

= E

[
�( �B) exp

{
D0

∑
i< j

LBi−B j
(T )

}]
(7)

where E on the left is the expectation over the noise η of the
SHE, and on the right �(�x) := φ(x1) · · · φ(xk ), and the expec-
tation E is over independent Brownian motions B1, . . . Bk with
LBi−B j

(t ) their pair local time at zero, defined as follows. The
local time of a space-time continuous Brownian motion B(t )
with variance σ 2t is

LB(t ) := lim
ε→0+

σ 2

2ε

∫ t

0
1{−ε<B(s)<ε}ds. (8)

For k = 2 (and higher), the moment is rewritten in terms
of an expectation with respect to the two-point motion. The
same tilting argument works provided the two-point motions
occupy different spatial locations. When they are at the same
site, the two-point motion jump distribution [i.e., p(i, j) from
(2) with i = 0] has some residual effect after tilting which can
be written, as in Eq. (21), in terms of a local time contribution.
The tilted two-point motion clearly converges to independent
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Brownian motions, so the whole challenge is to understand
how the discrete local time converges to a limiting Brownian
local time.

To illustrate this challenge, note that a random walk that
lives entirely on the odd sublattice of Z will have zero discrete
local time at 0, yet will still converge to a Brownian motion.
More relevant to the current situation, the introduction of
some stickiness at zero for a random walk will not impact
its Brownian limit (provided the stickiness is not tuned in the
scaling limit) but will cause the discrete local time at 0 to
converge to a constant multiple of the Brownian local time
at 0. That constant dilation factor of the local time depends on
the degree of stickiness.

Thus, to address the discrete to continuous local time
convergence—in particular computing the dilation factor
(which translates into the noise strength coefficient D0)—we
develop an argument based on a discrete version of the Tanaka
formula and the Doob-Meyer decomposition, both tools based
on studying random walks and Brownian motions as martin-
gales. This will identify a discrete local time, not entirely
concentrated at 0, which converges to the Brownian local
time at 0. Then we will use the invariant measure of the gap
between the two-point motion to identify what portion of that
discrete local time comes from the discrete local time at 0
(which is what arises in our moment formulas). This will yield
the desired dilation factor and explains the form of D0 given
earlier. The details of this argument are presented below.

V. CONVERGENCE OF THE FIRST MOMENT

The convergence of the first moment will show that
our choice of C(N, T, X ) is the correct prefactor to ensure
UN (T, φ) converges to the first moment of the SHE. We begin
by averaging UN (T, φ) in Eq. (6) over the random environ-
ment to obtain

Eν[UN (T, φ)] = Eν

[
C

(
N, T,

R(NT ) − c(N )T√
2DN

)

× φ

(
R(NT ) − c(N )T√

2DN

)]
. (9)

The notation used above should be recalled from Sec. II.
In particular, R = R1 is the one-point motion under the an-
nealed measure Pν and is the expectation with respect to that
measure Eν .

We now absorb the prefactor into the expectation by in-
terpreting it as an exponential tilting of the independent and
identically distributed increments of the one-point motion.
We start by breaking up the one-point into its increments,
R(NT ) =∑NT

i=1 Yi where Yi are independent and identically
distributed according to ξ̄ . Thus, we can rewrite

C

(
N, T,

R(NT ) − c(N )T√
2DN

)
= exp

{ R(NT )
2DN1/4

}
(∑

i∈Z ξ̄ (i)exp
{

i
2DN1/4

})NT

=
NT∏
i=1

exp
{ Yi

2DN1/4

}
∑

i∈Z ξ̄ (i)exp
{

i
2DN1/4

} .
Since the Yi are independent and identically distributed ac-
cording to ξ̄ , this factor can be absorbed as a tilt of the jump
distribution for Yi. Define the tilted measure Ẽν under which

the Yi are independent and identically distributed but now with
the probability that Yi = j for j ∈ Z given by

ξ̄ ( j) exp
{ j

2DN1/4

}
∑

i∈Z ξ̄ (i)exp
{

i
2DN1/4

} . (10)

Notice how the prefactor was chosen to make sure this tilt-
ing results in a probability measure. Recalling that R(NT ) =∑NT

i=1 Yi, we thus have shown that Eq. (9) can be rewritten in
terms of the tilted measure as

Eν[UN (T, φ)] = Ẽν

[
φ

(
R(NT ) − c(N )T√

2DN

)]
. (11)

Under the tilted measure, the centered and scaled one-point
motion converges to a Brownian motion, i.e.,

lim
N→∞

R(NT ) − c(N )T√
2DN

= B(T ), (12)

where B is a standard unit variance Brownian motion. To see
this, since the increments of R are independent and identi-
cally distributed, it suffices to check that that R(NT )−c(N )T√

2DN
has

mean 0 and variance T , at least up to terms that vanish as
N → ∞. Under the tilted distribution Eq. (10), the increments
of R(NT ) have mean∑

i∈Z ξ̄ (i)i exp
{

i
2DN1/4

}
∑

j∈Z ξ̄ ( j) exp
{ j

2DN1/4

}
=
∑

i∈Z ξ̄ (i)i
(
1 + i

2DN1/4 + i2

4DN1/2 + O(N−3/4)
)

∑
j∈Z ξ̄ ( j)(1 + O(N−1/2))

=
∑
i∈Z

ξ̄ (i)
i2

2DN1/4
+
∑
i∈Z

ξ̄ (i)
i3

4D2N1/2
+ O(N−3/4)

= c(N )

N
+ O(N−3/4)

where O(x) denotes terms of order x and lower. The second
moment of the increments of R(NT ) are∑

i∈Z ξ̄ (i)i2 exp
{

i
2DN1/4

}
∑

j∈Z ξ̄ ( j) exp
{ j

2DN1/4

} =
∑

i∈Z ξ̄ (i)i2(1 + O(N−1/4))∑
j∈Z ξ̄ ( j)(1 + O(N−1/2))

= 2D + O(N−1/4).

Thus, under the tilted measure R(NT ) has mean c(N )T +
O(N1/4) and variance 2DNT + O(N3/4), or equivalently
R(NT )−c(N )T√

2DN
has a mean of order O(N−1/4) and variance T +

O(N−1/4).
Combining Eq. (12) with Eq. (11), we see the first equality,

lim
N→∞

Eν[UN (T, φ)] = E[φ(B(T ))]

= E

[∫
R

φ(X )Z (X, T )dX

]
. (13)

Here E is the expectation with respect to a standard Brownian
motion staring at 0, and the second equality (to the the first
moment of the SHE) follows from in Eq. (7).
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VI. CONVERGENCE OF THE SECOND MOMENT

We now show that the second moment of U (T, φ) con-
verges to the second moment of the SHE with the strength of
the noise given by D0 = λext

(2D)3/2 . In doing so, we identify the
characteristic length scale λext.

Recall that given an instance of the environment ξ, the
random walks R1, R2, . . . are independent and identically dis-
tributed. Thus, in Eq. (6), we could have just as well replaced
R by R1 or R2 without changing anything. Doing that, and
owing to the independent (given ξ) of R1 and R2, it follows
that

UN (T, φ)2 = Eξ

[
C

(
N, T,

R1(NT ) − c(N )T√
2DN

)
C

(
N, T,

R2(NT ) − c(N )T√
2DN

)
φ

(
R1(NT ) − c(N )T√

2DN

)
φ

(
R2(NT ) − c(N )T√

2DN

)]
.

This is the first step of the replica method.
The next step is to take the expectation over the random environment to get a formula for the second moment. Using the

explicit form of the prefactor C, this yields

Eν[UN (T, φ)2] = Eν

[
exp
{R1(NT )+R2(NT )

2DN1/4

}
(∑

i∈Z ξ̄ (i)exp
{

i
2DN1/4

})2NT φ

(
R1(NT ) − c(N )T√

2DN

)
φ

(
R2(NT ) − c(N )T√

2DN

)]
, (14)

where the pair (R1, R2) is the two-point motion defined earlier. As we did for the first moment, we want to absorb the prefactor as
a tilt of the transition probabilities for the two-point motion. When R1 �= R2, this works exactly as before since the two random
walks take independent jumps. When R1 = R2, the two jumps are no longer independent, and an additional factor is needed to
ensure that the tilting results in a probability measure. This produces a discrete local time at 0 term in our moment formula, see
Eq. (20) below.

To derive Eq. (20), first observe that the denominator inside the expectation in Eq. (14) can be broken into NT equal factors
with each term given by ⎛

⎝∑
i∈Z

ξ̄ (i)exp

{
i

2DN1/4

}⎞⎠
2

=
∑

i, j∈Z
ξ̄ (i)ξ̄ ( j)exp

{
i + j

2DN1/4

}
(15)

after expanding into a double sum. When R1(t ) �= R2(t ), this is the right normalization for the tilting factor needed to produce
a probability measure for the increments of R1 and R2. When R1(t ) = R2(t ), we require a different normalization to get a tilted
probability measure since ξ̄ (i)ξ̄ ( j) should be replaced by Eν[ξt,x(i)ξt,x( j)] (as the walks are at the same site).

To account for this, we really should have started with a different prefactor,

C

(
N, T,

R1(NT ) − c(N )T√
2DN

)
C

(
N, T,

R2(NT ) − c(N )T√
2DN

)
exp

{
−g((2D)−1N−1/4)

NT −1∑
i=0

1{R1(i)=R2(i)}

}
(16)

where

g(λ) = ln

⎛
⎝∑

i, j∈Z
Eν[ξt,x(i)ξt,x( j)]eλ(i+ j)

⎞
⎠− 2 ln

⎛
⎝∑

i∈Z
ξ̄ (i)eλi

⎞
⎠. (17)

If we use this tilting factor, then we obtain a tilted version of the two-point motion which is a Markov chain with the following
transition probabilities: When R1(t ) �= R2(t ), then R1(t + 1) = R1(t ) + i and R2(t + 1) = R2(t ) + j with probability

ξ̄ (i)ξ̄ ( j)exp
{ i+ j

2DN1/4

}
∑

k,l∈Z ξ̄ (k)ξ̄ (l )exp
{

k+l
2DN1/4

} . (18)

When R1(t ) = R2(t ) = x, then R1(t + 1) = x + i and R2(t + 1) = x + j with probability

Eν[ξt,x(i)ξt,x( j)]exp
{ i+ j

2DN1/4

}
∑

k,l∈Z Eν[ξt,x(k)ξt,x(l )]exp
{

k+l
2DN1/4

} . (19)

Noting the overload with the notation from the first moment calculation, we let Ẽν[•] denote the expectation value with
respect to the tilted probability distribution on (R1, R2) given by the above transition probability.

Taking into account the g factor we included in Eq. (16), we find that

Eν[UN (T, φ)2] = Ẽν

[
exp

{
g((2D)−1N−1/4)

NT −1∑
i=0

1{R1(i)=R2(i)}

}
φ

(
R1(NT ) − c(N )T√

2DN

)
φ

(
R2(NT ) − c(N )T√

2DN

)]
. (20)
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By Taylor expansion we find that g((2D)−1N−1/4) = Eν [(
∑

i∈Z iξt,x (i))2]
(2D)2N1/2 + O(N−3/4) = Varν (Eξ[Y ])

(2D)2N1/2 + O(N−3/4), where the second

equality comes from observing that Varν (Eξ[Y ]) = Eν[(
∑

i∈Z iξt,x(i))2]. The fact that this term behaves like N−1/2 is key since
the discrete local time [i.e.,

∑NT −1
i=0 1{R1(i)=R2(i)}] needs to be scaled by that factor to have a limit. This consideration is what

forces the scaling regime for SHE convergence to be in the N3/4-depth moderate deviations of the tail probability.
Substituting this expansion in Eq. (20) and using ≈ to denote that we have dropped the lower-order terms, we have

Eν[UN (T, φ)2] ≈ Ẽν

[
exp

{
Varν (Eξ[Y ])

(2D)2N1/2

NT −1∑
i=0

1{R1(i)=R2(i)}

}
φ

(
R1(NT ) − c(N )T√

2DN

)
φ

(
R2(NT ) − c(N )T√

2DN

)]
. (21)

Notice that Eq. (21) looks like a discrete analog of the second
moment of the SHE in Eq. (7) since

∑NT −1
i=0 1{R1(i)=R2(i)} is the

discrete local time of R1(i) − R2(i) at 0. Furthermore, besides
their sticky interaction when R1 = R2, the tilted two-point
motion behaves like independent random walks just as in the
first moment case. The only way that the sticky interaction
could impact the scaling limit is if it is scaled to become
stronger as N → ∞ (i.e., so that the time they stay together
increases in the scaling limit), or if the size of the jump from
R1 = R2 were scaled to become longer as N → ∞ (i.e., so as
to result in a discontinuous jump in the limit process). This
is not the case, and hence under the measure Ẽν , the pair
( R1(NT )−c(N )T√

2DN
, R2(NT )−c(N )T√

2DN
) converge to independent variance

one Brownian motions, as in the first moment case.
Our final step is to identity the scaling limit of the discrete

local time
∑NT −1

i=0 1{R1(i)=R2(i)}, namely that it converges to a
constant (which we identity) times the local time of the dif-
ference of two independent standard Brownian motions. This
is the most subtle and interesting part of the argument since
it more broadly explains in what sense discrete local times
converge to their continuum Brownian analogs. In particular,
although the discrete random walks converge to independent
Brownian motions, the discrete local time need not converge
to the local time of their Brownian motion limits. For example,
consider a simple symmetric random walk on Z modified so
as to stay at 0 with probability 1/2 and go to ±1 each with
probability 1/4 (i.e., it is sticky at the origin). The discrete ran-
dom walks will converge to Brownian motion, but the discrete
local time will converge to a constant (explicitly calculable
and exceeding one) times the local time of standard Brownian
motion. Identifying this constant which rescales the local time
limit is the key to identifying the noise strength of the SHE.
Specifically, in what follows, we show that

lim
N→∞

1√
2DN

NT −1∑
i=0

1{R1(i)=R2(i)}

= 1∑∞
l=0 μ̃(l )Eν[�(t + 1) − �(t ) | �(t ) = l]

LB1−B2

0 (T ),

(22)

where B1 and B2 are independent standard Brownian motions
starting at 0. Notice that the prefactor of the local time on the
right-hand side is the denominator of λext in Eq. (5). We show
this in Sec. VI A.

Putting the above together, we conclude that

lim
N→∞

Eν[UN (T, φ)2]

= E
[
e

λext
(2D)3/2 LB1−B2

0 (T )
φ(B1(T ))φ(B2(T ))

]
,

where E is the expectation with respect to two independent
Brownian motions B1 and B2 start at 0 and with variance 1;
and λext is given by Eq. (5). This is indeed the second moment
of the multiplicative stochastic heat equation defined in Eq. (7)
with noise strength given by Eq. (4).

A similar argument applies for the case of general mo-
ments. A priori, when dealing with higher moments, there
are terms that come from multiparticle interactions, e.g.,
when R1 = R2 = R3. Each of these contributions needs to
be accounted for when writing down the tilted measure and
contribute differently to the local time factor. However, in our
scaling, these different factors end up factorizing as N → ∞
and thus only contribute in the form of two-body local times,
as needed to recover the general moment formula Eq. (7).

A. Convergence to local time

The purpose of this section is to demonstrate the claimed
convergence of Eq. (22). Recall V (t ) = R2(t ) − R1(t ), so∑NT −1

i=0 1{R1(i)=R2(i)} =∑NT −1
i=0 1{|V (i)|=0} is the sum of occupa-

tion times at 0 for the random walk V . To derive Eq. (22), we
identify a discrete analog of Tanaka’s formula to identify a
smoothed, discrete local time that converges to the local time
of Brownian motion. We then use the invariant measure of the
two-point gap process, �(t ) = |V (t )|, to relate the smoothed,
discrete local time to the discrete local time at 0.

Before giving Tanaka’s formula, we recall the definition
of a martingale. A continuous time martingale is a time-
parameterized collection of random variables, (Yt )t�0, which
obeys the martingale property whereby E[Yt | Fs] = Ys for
all t > s � 0, where Fs is the σ -algebra generated by Yr for
all s � r � 0. In words, this property says that the expected
value at time t , given the history of the process up to time
s, is the value at time s. Brownian motion Bt with drift zero
is an example of a martingale, as is B2

t − t (the quadratic
martingale) or eλBt −λ2t/2 (the exponential martingale) for
any λ.

Tanaka’s formula gives a decomposition of the absolute
value of a Brownian motion into the sum of a martingale
and Brownian local time. More precisely, given a Brownian
motion B(t ), the Tanaka formula states that

|B(t )| =
∫ t

0
sgn(Bs)dBS + LB(t ), (23)

where LB(t ) is the local time at zero, defined in Eq. (8), and

sgn(x) =
⎧⎨
⎩

+1 x > 0
0 x = 0
−1 x < 0

.
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The stochastic integral
∫ t

0 sgn(Bs)dBS is a martingale, and, in
fact, is another Brownian motion.

Tanaka’s formula gives a way to decompose |B(t )| into the
sum of a martingale (the stochastic integral) and an increasing
predictable process (the local time). Such a decomposition
is called the Doob-Meyer decomposition. A key fact is that
the Doob-Meyer decomposition of a submartingale [a process
such as Yt = |B(t )| that satisfies E[Yt | Fs] � Ys for all t >

s � 0] is unique under fairly general assumptions. Therefore,
if we can obtain any decomposition of |B(t )| into the sum
of a martingale term and an increasing predictable process,
then we can identify that increasing predictable process as
Brownian local time.

Motivated by this fact, we obtain a Doob decomposition
for �(t ) = |V (t )| by identifying a discrete analog of Tanaka’s
formula. This decomposition involves the sum of a martingale
and a discrete local time term. We then take the term-by-term
limit of this decomposition. We know that �(t ) will converge
to |B(t )|, where B(t ) will be a Brownian motion with variance
2. The martingale term will converge to a limiting martingale,
and the limit of the discrete local time term will still be an
increasing predictable process. Hence, by the uniqueness of
the Doob-Meyer decomposition for |B(t )|, we will conclude
that the limit of the discrete local time term is Brownian local
time.

There are several mathematical subtleties that we brush
over but quickly note here. From Eq. (21), we are concerned
with convergence of an expectation with respect to the tilted
measure Ẽν of an expression involving the expectation of the
local time at zero for �(t ). The argument presented below
shows that this local time under the untilted measure Eν con-
verges in distribution to a constant multiple of Brownian local
time. The replacement of the tilted measure by its untilted
counterpart is mostly out of convenience (the argument could
be done under the tilted measure, too) and is justified since as
N → ∞, the tilted (N-dependent) measure converges to the
untilted one. This can be seen by expanding ex around x = 0 to
simplify the exponential in the tilted measure. Then the sums
in the denominators of (18) and (19) evaluate to 1, and we
recover the transition probabilities of the untilted two-point
motion. The issue around convergence of expectations of ex-
ponentials would require some further careful justification that
we do not pursue here.

Turning to the details of this argument, we decompose �(t )
as follows:

�(t ) = M(t ) +
t−1∑
i=0

∞∑
l=0

κ (l )1{�(i)=l}, (24)

where we define

κ (l ) = Eν[�(i + 1) − �(i)
∣∣�(i) = l] and

M(t ) := �(t ) −
t−1∑
i=0

∞∑
l=0

κ (l )1{�(i)=l}.

Note that �(i + 1) − �(i) does not actually depend on i since
we are conditioning on �(i) = l .

To see that M(t ) is a martingale with respect to the untilted
measure Eν , we rewrite M(t ) as

M(t ) =�(t )−
t−1∑
i=0

∞∑
l=0

Eν[�(i + 1)−�(i) | �(i)= l]1{�(i)=l}

= �(t ) −
t−1∑
i=0

Eν[�(i + 1) − �(i) | �(i)],

where we have taken the sum over l so that we now condition
on the random value �(i). Notice �(i + 1) − �(i) is indepen-
dent of the values of �(1), . . . ,�(i − 1) and only depends on
�(i). Thus, we can rewrite

M(t ) = �(t ) −
t−1∑
i=0

Eν[�(i + 1) − �(i) | �(1), . . . ,�(i)].

It follows from this and telescoping that M(t ) is a martingale.
We now show that the term

∑t−1
i=0

∑∞
l=0 κ (l )1{�(i)=l} is

increasing in t and predictable. We first show that κ (l ) � 0.
To see this, we use our results from Ref. [25] which show κ (l )
simplifies to

κ (l ) =
{∑

i, j∈Z |i − j|Eν[ξ (i)ξ ( j)] l = 0∑
|i− j|>l (|i − j| − l )ξ̄ (i)ξ̄ ( j) l > 0

. (25)

Thus, κ (l ) � 0 and hence
∑t−1

i=0

∑∞
l=0 κ (l )1{�(i)=l} is a sum

of non-negative terms which increases in time. Furthermore,
this process is predictable as it only depends on the values of
�(0) . . . �(t − 1). Therefore, (24) is a decomposition of �(t )
into the sum of a martingale and an increasing predictable
process.

We look at the limiting behavior of this decomposition
under a diffusive scaling and match it term by term with
Tanaka’s formula in Eq. (23). As argued in the paragraph after
Eq. (21), the term �(t ) = |R1(t ) − R2(t )| converges under
diffusive scaling to |B1(t ) − B2(t )|. Since the term M(t ) is
a martingale, it should likewise converge to a limiting mar-
tingale. Therefore, the second term on the right-hand side
of Eq. (24) should converge to the local time LB1−B2

(t ) in
Eq. (23) (where we take B = B1 − B2). Thus, taking t = NT ,
under the diffusive scaling

lim
N→∞

1√
2DN

∞∑
l=0

κ (l )
NT −1∑

i=0

1{�(i)=l} = LB1−B2
(T ). (26)

This completes the first step towards establishing Eq. (22). Of
course, that result calls for taking the limit of the discrete local
time at 0,

lim
N→∞

1√
2DN

Nt−1∑
i=0

1{�(i)=0}, (27)

whereas Eq. (26) is in terms of a combination of local time at
every position l ∈ Z�0.

To compare the limits in Eqs. (26) and (27), we will show
in Sec. VI A 1 that for l � 0,

lim
t→∞

∑t
i=0 1{�(i)=l}∑t
i=0 1{�(i)=0}

= μ̃(l ), (28)
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where μ̃ is the normalized invariant measure of V (t ), see
the discussion after Eq. (5). For large t , we can therefore
approximately relate the local time at l and at 0 so that

t∑
i=0

1{�(i)=l} ≈ μ̃(l )
t∑

i=0

1{�(i)=0}. (29)

Using this approximation, we obtain

∞∑
l=0

κ (l )
t−1∑
i=0

1{�(i)=l} ≈
( ∞∑

l=0

κ (l )μ̃(l )

)
t−1∑
i=0

1{�(i)=0}.

Substituting this into Eq. (26) and rearranging, we obtain

lim
N→∞

1√
2DN

Nt−1∑
i=0

1{�(i)=0} = 1∑∞
l=0 κ (l )μ̃(l )

LB1−B2
(t ).

(30)
After substituting in our definitions of κ (l ) and �(t ), we
conclude that

lim
N→∞

1√
2DN

Nt−1∑
i=0

1{R1(i)=R2(i)}

= 1∑∞
l=0 μ̃(l )Eν[�(t + 1) − �(t ) | �(t ) = l]

LB1−B2
(t ),

which indeed matches Eq. (22).

1. Invariant measure of V

In this section, we demonstrate the claim in Eq. (28). If a
Markov chain is irreducible (starting from any state, the chain
can eventually reach any other state) and recurrent (it returns
to every state infinitely many times), then it has a unique
invariant measure up to a constant multiple. As explained
earlier, we consider V under the untilted measure Eν on the
two-point motion rather than the tilted probability distribu-
tion. We can see that V (t ) is recurrent as follows: When V (t )
is away from 0 its increments are independent and identically
distributed and have mean 0 and thus, by the Chung-Fuchs
theorem [41], the walk will almost surely eventually return to
0. Once at 0, it will eventually leave, and the above argument
can be repeated to show that V (t ) will return to 0 infinitely
many times, which suffices to show recurrence. However, V (t )
may not always be irreducible. For example, consider the case
where R1(t ) and R2(t ) only take nearest-neighbor jumps. Then
V (t ) can only take jumps that are multiples of 2, so if it starts
from 0, it can only visit sites in the sublattice 2Z.

Let us first deal with the case where V (t ) is irreducible
so that it has a unique (up to a constant multiple) invariant
measure. Let

T0 = 0, Tk = inf{n > Tk−1 : V (n) = 0}
so that Tk is the kth return time to 0. Define Y l

k =∑Tk+1−1
i=Tk

1{V (i)=l}. For an irreducible and recurrent Markov
chain, we know that the measure μ on Z defined by μ(l ) :=
E[Y l

0 ] is an invariant measure for V where E is the expectation
of the walker starting at 0. Furthermore, since V is a Markov
chain, the random variables (Y l

k )k�0 are independent and iden-
tically distributed for a fixed l .

We have that

Y l
0 + · · · + Y l

n−1

n
=
∑Tn−1

i=0 1{V (i)=l}∑Tn−1
i=0 1{V (i)=0}

. (31)

The equality in the denominator is due to the fact that we
visit 0 exactly n times before time Tn − 1. By the law of large
numbers for independent and identically distributed random
variables,

lim
n→∞

Y l
0 + · · · + Y l

n

n
= E

[
Y l

0

] = μ(l ), (32)

almost surely. On the other hand, we have that

lim
n→∞

∑Tn−1
i=0 1{V (i)=l}∑Tn−1
i=0 1{V (i)=0}

= lim
t→∞

∑t
i=0 1{V (i)=l}∑t
i=0 1{V (i)=0}

. (33)

Thus, by combining Eqs. (31)–(33), we obtain

lim
t→∞

∑t
i=0 1{V (i)=l}∑t
i=0 1{V (i)=0}

= μ(l ). (34)

Note that by symmetry μ(l ) = μ(−l ). Furthermore, for
l = 0, we have

1{�(i)=l} = 1{V (i)=l}

and for l > 0,

1{�(i)=l} = 1{V (i)=l} + 1{V (i)=−l}.

Putting this all together with Eq. (34), we conclude that

lim
t→∞

∑t
i=0 1{�(i)=l}∑t
i=0 1{�(i)=0}

= μ̃(l ),

where

μ̃(l ) =
{

1 if l = 0

2μ(l ) if l > 0.

Finally, we consider the case where V (t ) is not irreducible.
We can decompose Z into the union of finitely many closed
and irreducible sets (sublattices) Ei. Let E0 be the set contain-
ing 0. Since we have V (0) = 0, we know that V (t ) ∈ E0 for
all t . Let μ be the unique invariant measure of the Markov
chain V (t ) when restricted to the state space E0. All of the
above analysis goes through, but the sum

∑∞
l=0 κ (l )μ̃(l ) gets

replaced by
∑

l∈E0
κ (l )μ̃(l ). An example of this situation is

when R1 and R2 are nearest-neighbor random walks. In this
case, V (t ) is restricted to the even integer sublattice, i.e.,
E0 = 2Z.

VII. CONVERGENCE OF THE TAIL
PROBABILITY TO THE SHE

The above discussion shows that the first two moments of
the rescaled probability mass distribution converge to the mo-
ments of the SHE. In this section, we discuss the convergence
of the tail probability, which can be written as

P ξ (R(NT ) � c(N )T +
√

2DNX )

= Eξ
[
1{R(NT )�c(N )T +√

2DNX}
]
. (35)
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Defining (and then simplifying)

φtail
N (X ′) := C(N, T, X )

C(N, T, X ′)
1{X ′�X }

= exp

{
− N1/4

√
2D

(X ′ − X )

}
1{X ′�X }, (36)

we can rewrite Eq. (35) as

P ξ (R(NT ) � c(N )T +
√

2DNX )

= 1

C(N, T, X )
Eξ

[
C

(
N, T,

R1(NT ) − c(N )T√
2DN

)

φtail
N

(
R1(NT ) − c(N )T√

2DN

)]

= 1

C(N, T, X )
UN (T, φ), (37)

where we recall UN (T, φ) from Eq. (6). Observe that as
N → ∞,

exp

{
− N1/4

√
2D

(X ′ − X )

}
1{X ′�X } ≈ δ

(
N1/4

√
2D

(X ′−X )

)
1{X ′�X }.

Note here that the convergence shown earlier was for fixed φ

while we are now permitting φ to vary in N and tend to a Dirac
delta function. Thus, in light of the convergence of UN (T, φ)
to the SHE, this implies that

P ξ (R(NT ) � c(N )T +
√

2DNX )

≈ 1

C(N, T, X )

∫ ∞

X
δ

(
− N1/4

√
2D

(X ′ − X )

)

× Z (T ′, X ′)dX ′ (38)

=
√

2D

N1/4C(N, T, X )
Z (T, X ). (39)

Moving the prefactor to the left-hand side,

lim
N→∞

N1/4C(N, T, X )√
2D

P ξ (R(NT ) � c(N )T +
√

2DNX )

= Z (T, X ). (40)

Thus, the tail probability converges to the SHE with the same
noise strength but a modified prefactor.

VIII. THE DISTRIBUTION OF THE EXTREME LOCATION

In a system of many diffusing particles, the location of
the particle that has moved the furthest is often more impor-
tant than that of a typical particle, as in oocyte fertilization
[26,33,34], neuronal activation [32], and the information flow
in networks [35,36]. Thus, understanding the distribution of
the extreme particle is of critical importance.

We summarize our main result in Ref. [25], where we used
the above results for the tail probability to characterize the
statistics of the extreme location, which is the particle that has
traveled the furthest, as a function of time. In that work, we
argued that a measurement of the extreme location can be used
to reveal microscopic information about the underlying envi-
ronment through the coefficient λext. To do this, we studied

the extreme location of N random walks at time t ,

MaxN
t := max({R1(t ), . . . RN (t )}),

recalling that R1(t ), . . . , RN (t ) for t ∈ Z�0 are random walks
distributed according to the measure P ξ. Using our results for
the distribution of the tail probability in Eq. (40), we found
that as t → ∞,

MaxN
t ≈

√
4Dt ln(N ) + Gumbel

⎛
⎝0,

√
Dt

ln(N )

⎞
⎠

+
√

Dt

ln(N )
h

(
0,

8λ2
ext ln(N )2

Dt

)
, (41)

where Gumbel(μ, β ) is a Gumbel random variable with lo-
cation μ and shape β, h(X, T ) solves the KPZ equation with
noise strength D0 = 1/2 and these two random variables are
independent.

The first and second terms in Eq. (41) agree with results
from classical diffusion on the distribution of the extreme
location [28,29].The derivation of the third term in Eq. (41)
is the main result of Ref. [25]. Since only the second and
third terms are random variables, the variance of MaxN

t has
two contributions. We find that as t → ∞

Var
(
MaxN

t

) ≈ π2Dt

6 ln(N )
+ λext

√
2πDt,

where Var(·) is the variance under the annealed measure Pν ,
the first term is the classical diffusion result which comes from
taking the variance of the Gumbel random variable in Eq. (41),
and the second term comes from taking the variance of the
KPZ term and then using the small time expansion of h(0, T )
[42,43].

By measuring the variance of the extreme location and
subtracting off the contribution due to classical diffusion,
the KPZ term, and subsequently λext, can be directly mea-
sured. Thus, a macroscopic measurement of the fluctuations
of the extreme location over time yields microscopic in-
formation about the underlying environment through the
coefficient λext.

IX. CONCLUSION

We have demonstrated that under a moderate deviations
scaling, there are universal KPZ fluctuations for a large class
of RWRE models. This class of model only includes environ-
ments which are delta correlated in space and time making
the environment memoryless. However, as our model is a
discretized or coarse-grained model, it can be equally well
applied to environments with memories that decay faster than
a power law by choosing the time steps in the model to be
larger than the correlation time of the memory. It should
be noted that this excludes a large number of interesting
systems with power-law memories [39] which would be ex-
pected to deviate even farther from the Einstein model in their
extremes.

We show that the strength of the noise of the KPZ equa-
tion is characterized by the variable λext, which depends on
the statistics of the underlying environment. Our results can
be extended to characterize the distribution of the extreme

014136-10



UNIVERSAL KARDAR-PARISI-ZHANG FLUCTUATIONS … PHYSICAL REVIEW E 113, 014136 (2026)

value statistics of a system of N diffusing particles as in Refs.
[20,21,25] (e.g., the first time a particle reaches a position L or
the position of the farthest particle at time t). Thus, we have
established a link between the extreme value statistics of a
system of diffusing particles and the microscopic rheological
properties of the underlying environment.
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